Micronutrient deficiencies are common in locales where people must rely upon sorghum as their staple diet. Sorghum grain is seriously deficient in provitamin A (β-carotene) and in the bioavailability of iron and zinc. Biofortification is a process to improve crops for one or more micronutrient deficiencies. We have developed sorghum with increased β-carotene accumulation that will alleviate vitamin A deficiency among people who rely on sorghum as their dietary staple. However, subsequent β-carotene instability during storage negatively affects the full utilization of this essential micronutrient. We determined that oxidation is the main factor causing β-carotene degradation under ambient conditions. We further demonstrated that coexpression of homogentisate geranylgeranyl transferase (HGGT), stacked with carotenoid biosynthesis genes, can mitigate β-carotene oxidative degradation, resulting in increased β-carotene accumulation and stability. A kinetic study of β-carotene degradation showed that the half-life of β-carotene is extended from less than 4 wk to 10 wk on average with HGGT coexpression.β-carotene accumulation | β-carotene stability | vitamin E | HGGT | biofortified sorghum T he importance of vitamin A for human health has been widely addressed (1-6). A 2009 Global Report (7) summarized vitamin A as being "vital for survival and sight; to boost the immune system, vitamin A is a critical micronutrient for survival and physical health of children exposed to disease." In Africa, malnutrition is a serious challenge, but micronutrient deficiency also plays a dominant role in the overall food security of that continent. Based on this global report, the five countries having the highest proportions of preschool age children with vitamin A deficiency were all located in Africa: 95.6% in Sao Tome and Principe, 84.4% in Kenya, 75.8% in Ghana, 74.8% in Sierra Leone, and 68.8% in Mozambique. Sorghum (Sorghum bicolor L.) is one of the most important staple foods for an estimated 500 million people, primarily those living in arid and semiarid areas. In Africa, it is the second most important cereal; about 300 million people rely on it as their daily staple food. Although sorghum is gluten-free and could be an attractive replacement for wheat-allergy sufferers, it is considered a nutrient-poor crop (8, 9) with very low amounts of β-carotene (10). The improvement of micronutrients in food crops has attracted considerable attention, and significant advances have been made in a range of major crops (11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22). Nutritional improvement in sorghum was undertaken a decade ago (23, 24); however, progress has lagged behind the progress in other crops. One reason was the recalcitrance of sorghum to genetic modification via transformation. Recent improvements in sorghum transformation have largely overcome this barrier and offer an alternative approach to genetic improvements in sorghum (25).One of our objectives is to develop sorghum lines with enhanced and stabilized provitamin A (β-car...