The tight gas reserves in the Hangjinqi area are estimated at 700 × 109 m3. Since the exploration of the Hangjinqi, numerous wells are already drilled. However, the Hangjinqi remains an exploration area and has yet to become a gas field. Identifying a paleo-depositional framework such as braided channels is beneficial for exploration and production companies. Further, braided channels pose drilling risks and must be properly identified prior to drilling. Henceforth, based on the significance of paleochannels, this study is focused on addressing the depositional framework and sedimentary facies of the first member (P2x1) of the lower Shihezi formation (LSF) for reservoir quality prediction. Geological modeling, seismic attributes, and petrophysical modeling using cores, logs, interval velocities, and 3D seismic data are employed. Geological modeling is conducted through structural maps, thickness map, and sand-ratio map, which show that the northeastern region is uplifted compared to northwestern and southern regions. The sand-ratio map showed that sand is accumulated in most of the regions within member-1. Interval velocities are incorporated to calibrate the acoustic impedance differences of mudstone and sandstone lithologies, suggesting that amplitude reflection is reliable and amplitude-dependent seismic attributes can be employed. The Root Mean Square (RMS) attribute confirmed the presence of thick-bedded braided channels. The results of cores and logging also confirmed the presence of braided channels and channel-bars. The test results of wells J34 and J72 shows that the reservoir quality within member-1 of LSF is favorable for gas production within the Hangjinqi area.