Renewable energy sources, particularly solar photovoltaic generation, now dominate generation options. Solar generation advancements have resulted in floating solar photovoltaics, also known as FSPV systems. FSPV systems are one of the fastest growing technologies today, providing a viable replacement for ground-mounted PV systems due to their flexibility and low land-space requirement. This paper presents a systematic approach for implementing a proposed FSPV–grid integrated system in Bhilai Steel Plant’s (BSP) subsections. BSP is a steel manufacturing plant located in Bhilai, Chhattisgarh, and the FSPV system has the potential to generate sufficient energy by accessing two of its reservoirs. The system was simulated in HOMER Pro software, which provided the FSPV system power estimations, area requirements, net present cost (NPC), levelized cost of energy (LCOE), production summary, grid purchasing/selling, IRR, ROI, paybacks and pollutant emissions. A sensitivity analysis for a hike in PV prices globally due to a shortage in poly silicone in international markets during the fiscal year 2021–2022 was undertaken for the proposed FSPV–grid system. Here, the authors considered hikes in the PV price of 1%, 9%and 18% respectively, since the maximum percentage increase in PV prices globally is 18%. The authors also compared the proposed FSPV–grid system to the existing grid-only system for two sections of the BSP and the results obtained showed that the NPC and LCOE would be much lower in the case of the FSPV–grid system than the grid-only system. However, with changes in the percentage hike in PV prices, the NPC and LCOE were found to increase due to changes in the proportion of FSPV–grid systems in production. The pollutant emissions were the minimum in the case of the FSPV–grid system, whereas they were the highest in the case of the existing grid-only system. Furthermore, the payback analysis indicated that the minimum ROI for the above-defined construction would be fully covered in 15.81 years with the nominal 1% pricing for FSPV–grid generation. Therefore, the overall results suggest that the FSPV–grid system has the potential to be a perfect alternative solar energy source that can meet the current electrical energy requirements of the steel manufacturing industry with nominal pricing better than the existing grid-only system, as well as addressing economic constraints and conferring environmental benefits.