Electric vehicles (EVs) have received massive consideration in the automotive industries due to their improved performance, efficiency and capability to minimize global warming and carbon emission impacts. The utilization of EVs has several potential benefits, such as increased use of renewable energy, less dependency on fossil-fuel-based power generations and energy-storage capability. Although EVs can significantly mitigate global carbon emissions, it is challenging to maintain power balance during charging on-peak hours. Thus, it mandates a comprehensive impact analysis of high-level electric vehicle penetration in utility grids. This paper investigates the impacts of large-scale EV penetration on low voltage distribution, considering the charging time, charging method and characteristics. Several charging scenarios are considered for EVs’ integration into the utility grid regarding power demand, voltage profile, power quality and system adequacy. A lookup-table-based charging approach for EVs is proposed for impact analysis, while considering a large-scale integration. It is observed that the bus voltage and line current are affected during high-level charging and discharging of the EVs. The residential grid voltage sag increases by about 1.96% to 1.77%, 2.21%, 1.96 to 1.521% and 1.93% in four EV-charging profiles, respectively. The finding of this work can be adopted in designing optimal charging/discharging of EVs to minimize the impacts on bus voltage and line current.
Achieving energy flexibility is becoming a key concern for energy system planners that manage intermittent and variable generations. Industries have enormous potential to deliver large-scale energy flexibility through demand response (DR) programs. This industrial demand flexibility achieved through the demand response programs will enable widespread adoption of renewable sources in the electricity grid network. This paper aims to provide a comprehensive review of demand response and it’s industrial application by addressing: 1) Current research status, 2) Current stages of demand response applications in industries, and 3) Barriers in the deployment of DR programs. This study shows that there is significant research progress in recent years in the field of DR. It also shows potential applications of DR programs in industries. However, the study found several technical, policy, and financial barriers still exist, limiting the widespread adoption of DR. Thus, this paper offers recommendations on technical, policy, and financial measures needed to over-come the barriers and help facilitate the utilization of demand response potential, especially in industries.
Data security of present-day power systems, such as the electricity market, has spurred global interest in both industry and academia. The electricity market can either be regulated (state-controlled entrance, policies, and pricing) or deregulated (open for competitors). While the security threats in a deregulated electricity market are commonly known and have been investigated for years, those in a regulated market still have scope for extensive research. Our current work focuses on exploring the data security of the regulated electricity market, and the regulated New Zealand Electricity Market (NZEM) has been considered for this research. Although the chances of cyberattacks on state-controlled regulated electricity market are relatively less, different layers of the current SCADA systems do pose some threats. In this context, we propose a decentralized Ethereum Blockchain-based end-to-end security prototype for a regulated electricity market such as the NZEM. This prototype aims to enhance data security between the different layers of the current SCADA systems. The detailed operation process and features of this prototype are presented in this work. The proposed prototype has prospects of offering improved data security solutions for the regulated electricity market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.