Purpose of review
This review summarizes recent metabolomics studies of renal disease, outlining some of the limitations of the literature to date.
Recent findings
The application of metabolomics in nephrology research has expanded from initial analyses of uremia to include both cross-sectional and longitudinal studies of earlier stages of kidney disease. Although these studies have nominated several potential markers of incident CKD and CKD progression, lack of overlap in metabolite coverage has limited the ability to synthesize results across groups. Further, direct examination of renal metabolite handling has underscored the substantial impact kidney function has on these potential markers (and many other circulating metabolites). In experimental studies, metabolomics has been used to identify a signature of decreased mitochondrial function in diabetic nephropathy and a preference for aerobic glucose metabolism in PKD; in each case, these studies have outlined novel therapeutic opportunities. Finally, as a complement to the longstanding interest in renal metabolite clearance, the microbiome has been increasingly recognized as the source of many plasma metabolites, including some with potential functional relevance to CKD and its complications.
Summary
The high-throughput, high-resolution phenotyping enabled by metabolomics technologies has begun to provide insight on renal disease in clinical, physiologic, and experimental contexts.