Recently, the detection of occult cancer cells in peripheral blood has received a great deal of attention regarding the prediction of postoperative cancer recurrence and for novel strategies of adjuvant therapy. The aim of this study was to establish a new molecular diagnostic method of detecting circulating tumor cells. Gastric cancer SGC-7901 cells in 2 ml blood from healthy volunteers were serially diluted. Additional peripheral blood samples were collected from 90 patients and 27 healthy volunteers. Real-time reverse transcription-polymerase chain reaction was used to detect the levels of microRNA-106a (miR-106a) and microRNA-17 (miR-17). Receiver operating characteristics (ROC) curves were constructed. In recovery experiments, a significant correlation between the number of cancer cells and the levels of both miR-106a (r = -0.906, p = 0.037) and miR-17 (r = -0.912, p = 0.031) was found. In preoperative and postoperative patient groups, miR-106a and miR-17 levels were significantly higher than those in controls. The areas under the ROC curve for miR-106a, miR-17, and combination were 0.684 (p = 0.0066), 0.743 (p = 0.0001), and 0.741 (p = 0.0002), respectively. Our results indicate that the detection of miRNA in peripheral blood may be a novel tool for monitoring circulating tumor cells in patients with gastric cancers.
To identify the factors mediating the progression of diabetic nephropathy (DN), we performed RNA sequencing of kidney biopsy samples from patients with early DN, advanced DN, and normal kidney tissue from nephrectomy samples. A set of genes that were upregulated at early but downregulated in late DN were shown to be largely renoprotective, which included genes in the retinoic acid pathway and glucagon-like peptide 1 receptor. Another group of genes that were downregulated at early but highly upregulated in advanced DN consisted mostly of genes associated with kidney disease pathogenesis, such as those related to immune response and fibrosis. Correlation with estimated glomerular filtration rate (eGFR) identified genes in the pathways of iron transport and cell differentiation to be positively associated with eGFR, while those in the immune response and fibrosis pathways were negatively associated. Correlation with various histopathological features also identified the association with the distinct gene ontological pathways. Deconvolution analysis of the RNA sequencing data set indicated a significant increase in monocytes, fibroblasts, and myofibroblasts in advanced DN kidneys. Our study thus provides potential molecular mechanisms for DN progression and association of differential gene expression with the functional and structural changes observed in patients with early and advanced DN.
Kruppel-like Factor 2 (KLF2), a shear-stress inducible transcription factor, has endoprotective effects. In streptozotocin-induced diabetic rats, we found that glomerular Klf2 expression was reduced in comparison to non-diabetic rats. However, normalization of hyperglycemia by insulin treatment increased Klf2 expression to a level higher than that of non-diabetic rats. Consistent with this, we found that Klf2 expression was suppressed by high glucose but increased by insulin in cultured endothelial cells. To determine the role of KLF2 in streptozotocin-induced diabetic nephropathy, we used endothelial cell-specific Klf2 heterozygous knockout mice and found that diabetic knockout mice developed more kidney/glomerular hypertrophy and proteinuria than diabetic wide type mice. Glomerular expression of Vegfa, Flk1, and angiopoietin 2 increased but expression of Flt1, Tie2, and angiopoietin 1 decreased in diabetic knockout compared to diabetic wide type mice. Glomerular expression of ZO-1, glycocalyx, and eNOS was also decreased in diabetic knockout compared to diabetic wide type mice. These data suggest knockdown of Klf2 expression in the endothelial cells induced more endothelial cell injury. Interestingly, podocyte injury was also more prominent in diabetic knockout compared to diabetic wide type mice, indicating a crosstalk between these two cell types. Thus, KLF2 may play a role in glomerular endothelial cell injury in early diabetic nephropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.