Objective
To investigate the role of microRNA-155-5p on apoptosis and inflammatory response in human renal glomerular endothelial cells (HRGEC) cultured with high glucose.
Methods
The primary HRGEC were mainly studied, light microscopy was used to detect changes in cell morphology. Quantitative Real Time-Polymerase Chain Reaction, Western Blot, immunofluorescence were aimed to observe the mRNA and protein expression levels of target gene ETS-1, downstream factors VCAM-1, MCP-1 and cleaved caspase-3 in each group after high glucose treatment as well as transfection with miR-155 mimics or inhibitor.
Results
The expression of inflammatory factors and apoptosis of HRGEC cells increased under high glucose treatment. Compared with normal-glucose treatment, the expression of microRNA-155 markedly increased in HRGECs treated with high-glucose, as well as the mRNA and protein levels of ETS-1, VCAM-1, MCP-1 and cleaved caspase-3. Overexpression of microRNA-155 remarkably downregulated mRNA and protein levels of ETS-1, VCAM-1, MCP-1 and cleaved caspase-3, whereas miRNA-155 knockdown upregulated their levels. In addition, HRGEC cells were transfected with miR-155 mimics and ETS-1 siRNA with high glucose stimulation. The expression of ETS-1 was positively correlated with the expression of downstream factors VCAM-1 and MCP-1. These results suggest that ETS-1 can mediate endothelial cell inflammation by regulating VCAM-1 and MCP-1.
Conclusion
MiR-155 can negatively regulate the expression of target gene ETS-1 and its downstream factors VCAM-1, MCP-1 and cleaved caspase-3, thus mediating the inflammatory response and apoptosis of HRGEC.