We tested four types of surgical repair for load to failure and distraction in a bovine model of Achilles tendon repair. A total of 20 fresh bovine Achilles tendons were divided transversely 4 cm proximal to the calcaneal insertion and randomly repaired using the Dresden technique, a Krackow suture, a triple-strand Dresden technique or a modified oblique Dresden technique, all using a Fiberwire suture. Each tendon was loaded to failure. The force applied when a 5 mm gap was formed, peak load to failure, and mechanism of failure were recorded. The resistance to distraction was significantly greater for the triple technique (mean 246.1 N (205 to 309) to initial gapping) than for the Dresden (mean 180 N (152 to 208); p = 0.012) and the Krackow repairs (mean 101 N (78 to 112; p < 0.001). Peak load to failure was significantly greater for the triple-strand repair (mean 675 N (453 to 749)) than for the Dresden (mean 327.8 N (238 to 406); p < 0.001), Krackow (mean 223.6 N (210 to 252); p < 0.001) and oblique repairs (mean 437.2 N (372 to 526); p < 0.001). Failure of the tendon was the mechanism of failure for all specimens except for the tendons sutured using the Krackow technique, where the failure occurred at the knot. The triple-strand technique significantly increased the tensile strength (p = 0.0001) and gap resistance (p = 0.01) of bovine tendon repairs, and might have advantages in human application for accelerated post-operative rehabilitation.