Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Objectives: Breast cancer is the most common cancer and the leading cause of cancer-related death among women. An Estrogen Receptor (ER) antagonist called tamoxifen is used as an adjuvant therapy for ER-positive breast cancers. Approximately 40% of patients develop tamoxifen resistance (TAMR) while receiving treatment. Cancer cells can rewire their metabolism to develop resistant phenotypes, and their metabolic state determines how receptive they are to chemotherapy. Methods: Metabolite extraction from human MCF-7 and MCF-7/TAMR cells was done using the methanol-methanol-water extraction method. After treating the dried samples with methoxamine hydrochloride in pyridine, the samples were derivatized with 2,2,2-Trifluoro-N-methyl-N-(trimethylsilyl)-acetamide, and Chlorotrimethylsilane (MSTFA + 1% TMCS). The Gas chromatography/mass spectrometry (GC-MS) raw data were processed using MSdial and Metaboanalyst for analysis. Results: Univariate analysis revealed that 35 metabolites were elevated in TAMR cells whereas 25 metabolites were downregulated. N-acetyl-D-glucosamine, lysine, uracil, tyrosine, alanine, and o-phosphoserine were upregulated in TAMR cells, while hydroxyproline, glutamine, N-acetyl-L-aspartic acid, threonic acid, pyroglutamic acid, glutamine, o-phosphoethanolamine, oxoglutaric acid, and myoinositol were found to be downregulated. Multivariate analysis revealed a distinct separation between the two cell lines, as evidenced by their metabolite levels. The enriched pathways of deregulated metabolites included valine, leucine, and isoleucine degradation, Citric Acid Cycle, Warburg effect, Malate-Aspartate shuttle, glucose-alanine cycle, propanoate metabolism, and Phospholipid biosynthesis. Conclusion: This study revealed dysregulation of various metabolic processes in TAMR cells, which may be crucial in elucidating the molecular basis of the mechanisms underlying acquired tamoxifen resistance.
Objectives: Breast cancer is the most common cancer and the leading cause of cancer-related death among women. An Estrogen Receptor (ER) antagonist called tamoxifen is used as an adjuvant therapy for ER-positive breast cancers. Approximately 40% of patients develop tamoxifen resistance (TAMR) while receiving treatment. Cancer cells can rewire their metabolism to develop resistant phenotypes, and their metabolic state determines how receptive they are to chemotherapy. Methods: Metabolite extraction from human MCF-7 and MCF-7/TAMR cells was done using the methanol-methanol-water extraction method. After treating the dried samples with methoxamine hydrochloride in pyridine, the samples were derivatized with 2,2,2-Trifluoro-N-methyl-N-(trimethylsilyl)-acetamide, and Chlorotrimethylsilane (MSTFA + 1% TMCS). The Gas chromatography/mass spectrometry (GC-MS) raw data were processed using MSdial and Metaboanalyst for analysis. Results: Univariate analysis revealed that 35 metabolites were elevated in TAMR cells whereas 25 metabolites were downregulated. N-acetyl-D-glucosamine, lysine, uracil, tyrosine, alanine, and o-phosphoserine were upregulated in TAMR cells, while hydroxyproline, glutamine, N-acetyl-L-aspartic acid, threonic acid, pyroglutamic acid, glutamine, o-phosphoethanolamine, oxoglutaric acid, and myoinositol were found to be downregulated. Multivariate analysis revealed a distinct separation between the two cell lines, as evidenced by their metabolite levels. The enriched pathways of deregulated metabolites included valine, leucine, and isoleucine degradation, Citric Acid Cycle, Warburg effect, Malate-Aspartate shuttle, glucose-alanine cycle, propanoate metabolism, and Phospholipid biosynthesis. Conclusion: This study revealed dysregulation of various metabolic processes in TAMR cells, which may be crucial in elucidating the molecular basis of the mechanisms underlying acquired tamoxifen resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.