Starting from expressed sequence tag sequences and using the conserved amino acid sequence of the Arabidopsis thaliana AP2/ERF domain as a probe, we used in silico cloning to identify 87 genes that encode putative AP2/ERF transcription factors (TFs) from the Brassica napus. Almost all of the putative AP2/ERF factors from B. napus were similar to genes previously defined as AP2/ERF genes from A. thaliana. Based on the number of AP2-domains and the function of the genes, the AP2/ERF TFs from B. napus were classified into four subfamilies, named the AP2, DREB, ERF, and RAV subfamilies. We then predicted and analyzed cDNA sequences and amino acid sequences, amino acid compositions, physical and chemical characteristics, phylogenetic trees, conserved domain sequences, functional domains, molecular models, and folding states of the proteins they are predicted to encode. Expression analysis showed that four factors, which belonged to the ERF and DREB subfamilies, were induced by abiotic stresses, as well as by hormone treatment. This suggests that those AP2/ERF factors may be involved in signaling pathways responsive to abiotic and biotic stresses. The results from this study, reported herein, form a basis for future functional analyses of B. napus TFs that belong to the AP2/ERF family.