This study uses experimentally evolved brewer's yeasts to explore the costs and benefits of different nutrient-switching strategies when energy sources vary or remain constant.
Allopolyploidization has been a driving force in plant evolution. Formation of common wheat (Triticum aestivum L.) represents a classic example of successful speciation via allopolyploidy. Nevertheless, the immediate chromosomal consequences of allopolyploidization in wheat remain largely unexplored. We report here an in-depth investigation on transgenerational chromosomal variation in resynthesized allohexaploid wheats that are identical in genome constitution to common wheat. We deployed sequential FISH, genomic in situ hybridization (GISH), and homeolog-specific pyrosequencing, which enabled unequivocal identification of each of the 21 homologous chromosome pairs in each of >1,000 individual plants from 16 independent lines. We report that wholechromosome aneuploidy occurred ubiquitously in early generations (from selfed generation S 1 to >S 20 ) of wheat allohexaploidy although at highly variable frequencies (20-100%). In contrast, other types of gross structural variations were scant. Aneuploidy included an unexpected hidden type, which had a euploid chromosome number of 2n = 42 but with simultaneous loss and gain of nonhomeologous chromosomes. Of the three constituent subgenomes, B showed the most lability for aneuploidy, followed by A, but the recently added D subgenome was largely stable in most of the studied lines. Chromosome loss and gain were also unequal across the 21 homologous chromosome pairs. Pedigree analysis showed no evidence for progressive karyotype stabilization even with multigenerational selection for euploidy. Profiling of two traits directly related to reproductive fitness showed that although pollen viability was generally reduced by aneuploidy, the adverse effect of aneuploidy on seed-set is dependent on both aneuploidy type and synthetic line.chromosome dynamics | hidden aneuploidy | synthetic wheat | wheat evolution H exaploid common wheat (Triticum aestivum L.) is a major food crop with international significance, the evolution of which is characterized by two sequential allopolyploidization events: one leading to formation of allotetraploid wheat (T. turgidum L.) and the other to allohexaploid wheat (T. aestivum) (1, 2). Despite decades of research, the mechanisms by which the initial allopolyploid individuals became stabilized, established, and accumulate to successful speciation remains largely unknown in this important crop. In theory, chromosome-level perturbation should be among the first manifestations of nascent allopolyploidization. Indeed, two recent molecular cytogenetic studies, in resynthesized allotetraploid Brassica napus lines (3) and young natural allotetraploid Tragopogon miscellus populations (4), respectively, have provided unique insights into the chromosomal dynamics associated with nascent allotetraploidy. Being at the resolution of individual chromosomes, these studies have documented a surprisingly high incidence of both structural and numerical changes in nascent allotetraploid plants (3, 4). It was found that early generations of resynthesized allotetrap...
Enhancers are important regulators of gene expression in eukaryotes. Enhancers function independently of their distance and orientation to the promoters of target genes. Thus, enhancers have been difficult to identify. Only a few enhancers, especially distant intergenic enhancers, have been identified in plants. We developed an enhancer prediction system based exclusively on the DNase I hypersensitive sites (DHSs) in the Arabidopsis thaliana genome. A set of 10,044 DHSs located in intergenic regions, which are away from any gene promoters, were predicted to be putative enhancers. We examined the functions of 14 predicted enhancers using the b-glucuronidase gene reporter. Ten of the 14 (71%) candidates were validated by the reporter assay. We also designed 10 constructs using intergenic sequences that are not associated with DHSs, and none of these constructs showed enhancer activities in reporter assays. In addition, the tissue specificity of the putative enhancers can be precisely predicted based on DNase I hypersensitivity data sets developed from different plant tissues. These results suggest that the open chromatin signature-based enhancer prediction system developed in Arabidopsis may serve as a universal system for enhancer identification in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.