Abstract:We revisit the classical problem of the reduction collective operation in a heterogeneous environment. We discuss and evaluate four algorithms that are non-clairvoyant, i.e., they do not know in advance the computation and communication costs. On the one hand, Binomial-stat and Fibonacci-stat are static algorithms that decide in advance which operations will be reduced, without adapting to the environment; they were originally defined for homogeneous settings. On the other hand, Tree-dyn and Non-Commut-Tree-dyn are fully dynamic algorithms, for commutative or non-commutative reductions. With identical computation costs, we show that these algorithms are approximation algorithms. When costs are exponentially distributed, we perform an analysis of Tree-dyn based on Markov chains. Finally, we assess the relative performance of all four non-clairvoyant algorithms with heterogeneous costs though a set of simulations.