By properly including the forward motion of the array in the signal model, improved bearing estimation performance for a towed line array can be obtained. The improvement is a consequence of utilizing the bearing information contained in the Doppler. In this paper, it is shown by use of the Cramér-Rao lower bound that, as the array moves forward, the variance on the bearing estimate for an array of pressure sensors decreases, and that if an array of pressure-vector sensors is used, a significant improvement over that obtained for the array using pressure sensors only is obtained.