Abstract-Recent results in information theory have demonstrated the enormous potential of wireless communication systems with antenna arrays at both the transmitter and receiver. To exploit this potential, a number of layered space-time architectures have been proposed. These layered space-time systems transmit parallel data streams, simultaneously and on the same frequency, in a multiple-input multiple-output fashion. With rich multipath propagation, these different streams can be separated at the receiver because of their distinct spatial signatures. However, the analysis of these techniques presented thus far had mostly been strictly narrowband. In order to enable high-data-rate applications, it might be necessary to utilize signals whose bandwidth exceeds the coherence bandwidth of the channel, which brings in the issue of frequency selectivity. In this paper, we present a class of layered space-time receivers devised for frequency-selective channels. These new receivers, which offer various performance and complexity tradeoffs, are compared and evaluated in the context of a typical urban channel with excellent results.