“…, and (61):|E r 2 n,h ( f , t) − Er * 2 n,h ( f , t)| ≤ E| r n,h ( f , t) − r * n,h ( f , t)|| r n,h ( f , t) + r * n,h ( f , t)| ≤ C * 10 f 2 h −1 Eδ n ,which completes the proof.Proof of Proposition 3.From the definition of β n,i (t) in(32) it follows that, for any t ∈[0, 1], (t)(z n:i − t)K h (t − z n:i )∆z ni = 0, (t)(z n:i − t) 2 K h (t − z n:i )∆z ni = D −1 n (t)(w 2 n2 (t) − w n3 (t)w n1 (t)) =: B n (t),where D n (t) := w n0 (t)w n2 (t) − w 2 n1 (t). Expanding the function f (•) by the Taylor formula in a neighborhood of the point t (up to the second derivative), from the above identities we obtain, using(32),(58), and Lemma 1, that for any point t we haveBias f n,h (t) = EI(δ n ≤ c * h) {β n,i (t)( f (z n:i ) − f (t))K h (t − z n:i )∆z ni } + f (t)P(δ n > c * h) = f (t) 2 EI(δ n ≤ c * h)B n (t) + f (t)P(δ n > c * h) + o(h 2 ) = f (t) 2 B 0 (t) + O(Eδ n /h) + o(h 2 ); (62)moreover, the Oand o-symbols on the right-hand side of (62) are uniform in t. Note that B 0 (t) = O(h 2 ) holds for any t.Next, since for j = 1, 2 we have |w j (t)|w −1 0 (t) ≤ h j and |w nj (t)|w −1 n0 (t) ≤ h j for all natural n, the following asymptotic representation holds:(z n:i ) − f (t))K h (t − z n:i )∆z ni = − f (t)E w n1 (t) w n0 (t) I(δ n ≤ c * h) + f (t) 2 E w n2 (t) w n0 (t) I(δ n ≤ c * h) + O(hP(δ n > c * h)) + o(h 2 ) Eδ n ) + o(h 2 ). (63)Proof of Corollary 3.…”