Every plant is a member of a complex insect community that consists of tens to hundreds of species that belong to different trophic levels. The dynamics of this community are critically influenced by the plant, which mediates interactions between community members that can occur on the plant simultaneously or at different times. Herbivory results in changes in the plant's morphological or chemical phenotype that affect interactions with subsequently arriving herbivores. Changes in the plant's phenotype are mediated by molecular processes such as phytohormonal signaling networks and transcriptomic rearrangements that are initiated by oral secretions of the herbivore. Processes at different levels of biological complexity occur at timescales ranging from minutes to years. In this review, we address plant-mediated interactions with multiple species of the associated insect community and their effects on community dynamics, and link these to the mechanistic effects that multiple attacks have on plant phenotypes.
Sister chromatid cohesion is normally established in S phase in a process that depends on the cohesion establishment factor Eco1, a conserved acetyltransferase. However, due to the lack of known in vivo substrates, how Eco1 regulates cohesion is not understood. Here we report that yeast Eco1 and its human ortholog, ESCO1, both acetylate Smc3, a component of the cohesin complex that physically holds the sister chromatid together, at two conserved lysine residues. Mutating these lysine residues to a nonacetylatable form leads to increased loss of sister chromatid cohesion and genome instability in both yeast and human. In addition, we clarified that the acetyltransferase activity of Eco1 is essential for its function. Our study thus identified a molecular target for the acetyltransferase Eco1 and revealed that Smc3 acetylation is a conserved mechanism in regulating sister chromatid cohesion.
We consider nonparametric estimation of the mean and covariance functions for functional/longitudinal data. Strong uniform convergence rates are developed for estimators that are local-linear smoothers. Our results are obtained in a unified framework in which the number of observations within each curve/cluster can be of any rate relative to the sample size. We show that the convergence rates for the procedures depend on both the number of sample curves and the number of observations on each curve. For sparse functional data, these rates are equivalent to the optimal rates in nonparametric regression. For dense functional data, root-n rates of convergence can be achieved with proper choices of bandwidths. We further derive almost sure rates of convergence for principal component analysis using the estimated covariance function. The results are illustrated with simulation studies. On the other hand, functional principal component analysis (FPCA) based on nonparametric covariance estimation has become one of the most common dimension reduction approaches in functional data analysis. Applications include temporal trajectory interpolation [Yao, Müller and Wang (2005a)], functional generalized linear models [Müller and Stadtmüller (2005)
The intestinal epithelium possesses a remarkable self-renewal ability, which is mediated by actively proliferating Lgr5+ stem cells. Bone morphogenetic protein (BMP) signalling represents one major counterforce that limits the hyperproliferation of intestinal epithelium, but the exact mechanism remains elusive. Here we demonstrate that epithelial BMP signalling plays an indispensable role in restricting Lgr5+ stem cell expansion to maintain intestinal homeostasis and prevent premalignant hyperproliferation on damage. Mechanistically, BMP inhibits stemness of Lgr5+ stem cells through Smad-mediated transcriptional repression of a large number of stem cell signature genes, including Lgr5, and this effect is independent of Wnt/β-catenin signalling. Smad1/Smad4 recruits histone deacetylase HDAC1 to the promoters to repress transcription, and knockout of Smad4 abolishes the negative effects of BMP on stem cells. Our findings therefore demonstrate that epithelial BMP constrains the Lgr5+ stem cell self-renewal via Smad-mediated repression of stem cell signature genes to ensure proper homeostatic renewal of intestinal epithelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.