Let G be a permutation group of degree n, and k a positive integer with k ≤ n. We say that G has the k-existential transversal property, or k-et, if there exists a k-subset A (of the domain Ω) whose orbit under G contains transversals for all k-partitions P of Ω. This property is a substantial weakening of the k-universal transversal property, or k-ut, investigated by the first and third author, which required this condition to hold for all k-subsets A of the domain Ω. Our first task in this paper is to investigate the k-et property and to decide which groups satisfy it. For example, it is known that for k < 6 there are several families of k-transitive groups, but for k ≥ 6 the only ones are alternating or symmetric groups; here we show that in the k-et context the threshold is 8, that is, for 8 ≤ k ≤ n/2, the only transitive groups with k-et are the symmetric and alternating