In mammals, orexin A and B (also known as hypocretin 1 and 2) are two orexigenic peptides produced primarily by the lateral hypothalamus that signal through two G-protein-coupled receptors, orexin receptors 1/2, and have been implicated in the regulation of several physiological processes. However, the physiological roles of orexin are not well defined in avian (non-mammalian vertebrate) species. Recently, we made a breakthrough by identifying that orexin and its related receptors 1/2 (ORXR1/2) are expressed in avian muscle tissue and cell line, and appears to be a secretory protein. Functional in vitro studies showed that orexin A and B differentially regulated expression of the orexin system, suggesting that orexins might have autocrine, paracrine, and/or endocrine roles. Administration of recombinant orexin modulated mitochondrial biogenesis, dynamics, function, and bioenergetics. In this chapter, we include a brief overview of the (patho) physiological role of orexin, comparative findings between mammalian and avian orexin, and in-depth analysis of orexin's action on avian muscle mitochondria.