Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The introduction of alternative crops, including wild edible and medicinal plants, in organic cultivation systems presents an attractive approach to producing healthy and high-quality products due to their content in beneficial compounds and increased nutritional value. The current study evaluated the impact of organic and conventional fertilization on the growth, quality, nutrient status and stress response of the two wild edible species, e.g., purslane (Portulaca oleracea L.) and common sowthistle (Sonchus oleraceus L.), under field conditions. The fertilization treatments included the following: a control (NoFert) treatment with no fertilizers added, base dressing with conventional fertilization (CoFert), base dressing with organic fertilization (OrFert), base dressing and side dressing with conventional fertilization (OrFert + SCoFert) and base dressing and side dressing with organic fertilization (CoFert + SCoFert). Organic fertilization was carried out using a commercial vinasse-based organic fertilizer. In both purslane and common sowthistle, the application of organic fertilizers provided comparable or even enhanced plant growth traits, macronutrient content (i.e., P and K for purslane, and N for sowthistle) and quality (i.e., total soluble solids) compared to the application of conventional fertilizers. On the other hand, conventional fertilization with supplementary fertilization positively influenced the plant growth of purslane (i.e., plant height and stems biomass), as well as its physiological parameters (i.e., chlorophylls content), total phenolics content and antioxidant capacity (i.e., DPPH and FRAP). Similarly, conventional fertilization led to increased total phenolics and antioxidants in common sowthistle, while variable effects were observed regarding plant physiology, stress response and antioxidant capacity indices. In conclusion, the use of organic fertilization in both purslane and common sowthistle exhibited a performance similar to that of conventional fertilization, although further optimization of fertilization regimes is needed to improve the quality of the edible products.
The introduction of alternative crops, including wild edible and medicinal plants, in organic cultivation systems presents an attractive approach to producing healthy and high-quality products due to their content in beneficial compounds and increased nutritional value. The current study evaluated the impact of organic and conventional fertilization on the growth, quality, nutrient status and stress response of the two wild edible species, e.g., purslane (Portulaca oleracea L.) and common sowthistle (Sonchus oleraceus L.), under field conditions. The fertilization treatments included the following: a control (NoFert) treatment with no fertilizers added, base dressing with conventional fertilization (CoFert), base dressing with organic fertilization (OrFert), base dressing and side dressing with conventional fertilization (OrFert + SCoFert) and base dressing and side dressing with organic fertilization (CoFert + SCoFert). Organic fertilization was carried out using a commercial vinasse-based organic fertilizer. In both purslane and common sowthistle, the application of organic fertilizers provided comparable or even enhanced plant growth traits, macronutrient content (i.e., P and K for purslane, and N for sowthistle) and quality (i.e., total soluble solids) compared to the application of conventional fertilizers. On the other hand, conventional fertilization with supplementary fertilization positively influenced the plant growth of purslane (i.e., plant height and stems biomass), as well as its physiological parameters (i.e., chlorophylls content), total phenolics content and antioxidant capacity (i.e., DPPH and FRAP). Similarly, conventional fertilization led to increased total phenolics and antioxidants in common sowthistle, while variable effects were observed regarding plant physiology, stress response and antioxidant capacity indices. In conclusion, the use of organic fertilization in both purslane and common sowthistle exhibited a performance similar to that of conventional fertilization, although further optimization of fertilization regimes is needed to improve the quality of the edible products.
Soil salinization is considered a major global environmental problem due to its adverse effects on agricultural sustainability and production. Compost is an environmentally friendly and sustainable measure used for reclaiming saline–sodic soil. However, the responses of the physiological characteristics of alfalfa and the structure and function of rhizosphere fungal communities after compost application in saline–sodic soil remain elusive. Here, a pot experiment was conducted to explore the effect of different compost application rates on soil properties, plant physiological traits, and rhizosphere fungal community characteristics. The results showed that compost significantly increased soil nutrients and corresponding soil enzyme activities, enhanced leaf photosynthesis traits, and ion homeostasis compared with the control treatment. We further found that the rhizosphere fungal communities were dominated by Sodiomyces at the genus level, and the relative abundance of pathogenic fungi, such as Botryotrichum, Plectosphaerella, Pseudogymnoascus, and Fusarium, declined after compost application. Moreover, the α-diversity indexes of the fungal community under compost application rates of 15% and 25% significantly decreased in comparison to the control treatment. The soil SOC, pH, TP, and TN were the main environmental factors affecting fungal community composition. The leaf photosynthetic traits and metal ion contents showed significantly positive correlations with Sodiomyces and Aspergillus. The fungal trophic mode was dominated by Pathotroph–Saprotroph–Symbiotroph and Saprotroph. Overall, our findings provide an important basis for the future application of microbial-based strategies to improve plant tolerance to saline-alkali stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.