PurposeWorld imports of Italian sparkling wines fell by 9% in value and 5% in quantities. In view of this, the quality characterisation of these products is desirable to increase their market value and restore their global visibility.Design/methodology/approachFor this purpose, in this paper, heavy metals (Cd, Co, Cr, Cu, Fe, Ga, Hf, Hg, Mn, Mo, Nb, Ni, Pb, Re, Sb, Sn, Ta, Th, Tl, U, W, V, Zn, Zr), rare Earth elements (REEs) (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Yb) and isotopes ratio (208Pb/206Pb, 207Pb/206Pb, 206Pb/204Pb, 208Pb/207Pb, 87Sr/86Sr) were analysed in Italian sparkling wines with Protected Designation of Origin (PDO) certification by High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS) and MultiCollector Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS). The samples were produced in the Veneto region, and they were compared to white and red wines from the same area.FindingsSparkling wines present a characteristic elemental pattern compared to white and red ones, with lower content of heavy metals and higher content in REEs. The ratio 87Sr/86Sr resulted in a powerful micro-scale geographical origins marker while Pb ratios as winemaking process one, both useful to prevent possible frauds. Multivariate data analyses, such as PCA and PLS-DA, were used to develop a model of recognition of Venetian sparkling wines.Originality/valueThe good classification of sparkling wines was achieved (95%), proving the suitable use of these analytes as markers for recognising sparkling wines and their geographical origin verification. To the best of the authors’ knowledge, this is the first study investigating heavy metals, REEs and isotopes in Venetian sparkling wine for their recognition.