Echinoderms are a key group in understanding the evolution of the nervous system in the Metazoa. Remarkably, little is known about echinoderm neurobiology. The echinoderm podia, which are unique echinoderm modifications and comprise structures responsible for locomotion and feeding, have been largely neglected in nervous system studies. Here, we have applied immunohistological approaches using different neuronal markers to describe the neuroanatomy of the holothurian podia and its relation to the muscular component. We show, using the sea cucumber Holothuria glaberrima (Selenka, 1867), the direct innervation of the podia by the ectoneural component of the nervous system, as well as the existence of a connection between the nervous system components in the main nerves, the muscle, and the connective tissue. These findings confirm the ectoneural origin of the tube feet’s main nervous system and demonstrate its neuroanatomic complexity. We also show the presence of fibers and neurons within the tube feet mesothelium and connective tissue. The study of these simple structures will help us elucidate the echinoderms’ neuromuscular circuit and their evolutionary relationships.