Tissue function relies on the precise spatial organization of cells characterized by distinct molecular profiles. Single-cell RNA-Seq captures molecular profiles but not spatial organization. Conversely, spatial profiling assays either lack global transcriptome information or are not at the single-cell level. Here, we develop High-Density Spatial Transcriptomics (HDST), a method for RNA-seq at high spatial resolution. Spatially barcoded reverse transcription oligonucleotides are coupled to beads that are then randomly deposited in individual wells on a slide. The barcoded beads are decoded and coupled to a specific spatial address. We then capture and spatially in situ label RNA from the same histological tissue sections placed on the bead array slide. HDST recovers hundreds of thousands of transcript-coupled barcodes per experiment at 2 µm resolution. We demonstrate HDST in the mouse brain, use it to resolve spatial expression patterns and cell types, and show how to combine it with histological stains to relate expression patterns to tissue architecture and anatomy. HDST opens the way to 2D spatial analysis of tissues at high resolution.
Author information
AffiliationsBroad Institute of MIT and Harvard,