A superparamagnetic graphene oxide -Fe 3 O 4 nanoparticles hybrid (GO-Fe 3 O 4 ) was prepared via a simple and effective chemical precipitation method. The amount of loading of Fe 3 O 4 on GO was estimated as 18.6 wt% by atomic absorption spectrometry. The hybrid was then loaded with doxorubicin hydrochloride (DXR) and the loading capacity was as high as 1.08 mg mg À1 . Both of the GO-Fe 3 O 4 hybrids before and after loading with DXR can be dispersed well in aqueous solution. They can congregate under acidic conditions and move regularly under the force of an external magnet. Furthermore, the aggregated hybrid can be redispersed to form a stable suspension under basic conditions. These properties make it a potential candidate for controlled targeted drug delivery and release.
Fluorescence and photoacoustic imaging have different advantages in cancer diagnosis; however, combining effects in one agent normally requires a trade-off as the mechanisms interfere. Here, based on rational molecular design, we introduce a smart organic nanoparticle whose absorbed excitation energy can be photo-switched to the pathway of thermal deactivation for photoacoustic imaging, or to allow opposed routes for fluorescence imaging and photodynamic therapy. The molecule is made of a dithienylethene (DTE) core with two surrounding 2-(1-(4-(1,2,2-triphenylvinyl)phenyl)ethylidene)malononitrile (TPECM) units (DTE-TPECM). The photosensitive molecule changes from a ring-closed, for photoacoustic imaging, to a ring-opened state for fluorescence and photodynamic effects upon an external light trigger. The nanoparticles’ photoacoustic and fluorescence imaging properties demonstrate the advantage of the switch. The use of the nanoparticles improves the outcomes of in vivo cancer surgery using preoperative photoacoustic imaging and intraoperative fluorescent visualization/photodynamic therapy of residual tumours to ensure total tumour removal.
The nonlinear optical properties of two novel graphene nanohybrid materials covalently functionalized with porphyrin and fullerene were investigated by using the Z-scan technique at 532 nm in the nanosecond and picosecond time scale. Results show that covalently functionalizing graphene with the reverse saturable absorption chromospheres porphyrin and fullerene can enhance the nonlinear optical performance in the nanosecond regime. The covalently linked graphene nanohybrids offer performance superior to that of the individual graphene, porphyrin, and fullerene by combination of a nonlinear mechanism and the photoinduced electron or energy transfer between porphyrin or fullerene moiety and graphene.
The exciting applications of molecular motion are still limited and are in urgent pursuit, although some fascinating concepts such as molecular motors and molecular machines have been proposed for years. Utilizing molecular motion in a nanoplatform for practical application has been scarcely explored due to some unconquered challenges such as how to achieve effective molecular motion in the aggregate state within nanoparticles. Here, we introduce a class of near infrared-absorbing organic molecules with intramolecular motion-induced photothermy inside nanoparticles, which enables most absorbed light energy to dissipate as heat. Such a property makes the nanoparticles a superior photoacoustic imaging agent compared to widely used methylene blue and semiconducting polymer nanoparticles and allow them for high-contrast photoacoustic imaging of tumours in live mice. This study not only provides a strategy for developing advanced photothermal/photoacoustic imaging nanoagents, but also enables molecular motion in a nanoplatform to find a way for practical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.