The object of research is marine diesel engine oils, which provide lubrication, cooling and separation of friction surfaces. The subject of the research is the process of ensuring minimum mechanical losses in marine diesel engines. A problematic point in ensuring the lubrication of the cylinder-piston group and motion bearings is the lack of analytical and experimental studies that establish the relationship between the structural characteristics of engine oils and mechanical losses arising in marine internal combustion engines. The degree of orientational ordering of molecules and the thickness of the boundary lubricating layer are considered as the structural characteristics of engine oils. The determination of these values was carried out using the optical method based on the anisotropy of the light absorption coefficient by the boundary lubricant layer and the isotropic volume of the liquid (engine oil). The assessment of the level of mechanical losses arising in marine diesel engines was carried out according to an indirect indicator – the overshoot of the rotational speed and the time to reach the steady state of operation in the event of a change in load. It has been experimentally established that for engine oils used in marine internal combustion engines, the thickness of the boundary layer can be 15–17.5 µm. Motor oils, which are characterized by a higher ordering of molecules and a thickness of the boundary lubricant layer, ensure the flow of transient dynamic processes with less overshoot and a shorter transient time. This ensures the level of minimal mechanical losses occurring in marine diesel engines. The technology for determining the structural characteristics of engine oils can be used for any type and grade of oil (mineral or synthetic; high or low viscosity; used in both circulating and cylinder lubrication systems). The method of indirect assessment of mechanical losses of marine diesel engines can be used for any types of internal combustion engines of ships of sea and river transport (low-, medium- and high-speed; as well as performing the functions of both main and auxiliary engines).