For image segmentation, level set models are frequently employed. It offer best solution to overcome the main limitations of deformable parametric models. However, the challenge when applying those models in medical images stills deal with removing blurs in image edges which directly affects the edge indicator function, leads to not adaptively segmenting images and causes a wrong analysis of pathologies wich prevents to conclude a correct diagnosis. To overcome such issues, an effective process is suggested by simultaneously modelling and solving systems' two-dimensional partial differential equations (PDE). The first PDE equation allows restoration using Euler's equation similar to an anisotropic smoothing based on a regularized Perona and Malik filter that eliminates noise while preserving edge information in accordance with detected contours in the second equation that segments the image based on the first equation solutions. This approach allows developing a new algorithm which overcome the studied model drawbacks. Results of the proposed method give clear segments that can be applied to any application. Experiments on many medical images in particular blurry images with high information losses, demonstrate that the developed approach produces superior segmentation results in terms of quantity and quality compared to other models already presented in previeous works.