(2016) 'The quest to resolve recent radiations : plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae).', Molecular phylogenetics and evolution., 99 . pp. 16-33. Further information on publisher's website:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
AbstractThe Hawaiian mints (Lamiaceae), one of the largest endemic plant lineages in the archipelago, provide an excellent system to study rapid diversification of a lineage with a remote, likely paleohybrid origin. Since their divergence from New World mints 4-5 million years ago the members of this lineage have diversified greatly and represent a remarkable array of vegetative and reproductive phenotypes. Today many members of this group are endangered or already extinct, and molecular phylogenetic work relies largely on herbarium samples collected during the last century. So far a gene-by-gene approach has been utilized, but the recent radiation of the Hawaiian mints has resulted in minimal sequence divergence and hence poor phylogenetic resolution. In our quest to trace the reticulate evolutionary history of the lineage, a resolved maternal phylogeny is necessary. We applied a high-throughput approach to sequence 12 complete or nearly complete plastid genomes from multiple Hawaiian mint species and relatives, including extinct and rare taxa. We also targeted 108 hypervariable regions from throughout the chloroplast genomes in nearly all of the remaining Hawaiian species, and relatives, using a nextgeneration amplicon sequencing approach. This procedure generated ~20Kb of sequence data for each taxon and considerably increased the total number of variable sites over previous analyses. Our results demonstrate the potential of high-throughput sequencing of historic material for evolutionary studies in rapidly evolving lineages. Our study, however, also highlights the challenges of resolving relationships within recent radiations even at the genomic level.