Polyploidy is a mutation with profound phenotypic consequences and thus hypothesized to have transformative effects in plant ecology. This is most often considered in the context of geographical and environmental distributions—as achieved from divergence of physiological and life-history traits—but may also include species interactions and biological invasion. This paper presents a historical overview of hypotheses and empirical data regarding the ecology of polyploids. Early researchers of polyploidy (1910s–1930s) were geneticists by training but nonetheless savvy to its phenotypic effects, and speculated on the importance of genome duplication to adaptation and crop improvement. Cytogenetic studies in the 1930s–1950s indicated that polyploids are larger (sturdier foliage, thicker stems and taller stature) than diploids while cytogeographic surveys suggested that polyploids and diploids have allopatric or parapatric distributions. Although autopolyploidy was initially regarded as common, influential writings by North American botanists in the 1940s and 1950s argued for the principle role of allopolyploidy; according to this view, genome duplication was significant for providing a broader canvas for hybridization rather than for its phenotypic effects
per se
. The emphasis on allopolyploidy had a chilling effect on nascent ecological work, in part due to taxonomic challenges posed by interspecific hybridization. Nonetheless, biosystematic efforts over the next few decades (1950s–1970s) laid the foundation for ecological research by documenting cytotype distributions and identifying phenotypic correlates of polyploidy. Rigorous investigation of polyploid ecology was achieved in the 1980s and 1990s by population biologists who leveraged flow cytometry for comparative work in autopolyploid complexes. These efforts revealed multi-faceted ecological and phenotypic differences, some of which may be direct consequences of genome duplication. Several classical hypotheses about the ecology of polyploids remain untested, however, and allopolyploidy—regarded by most botanists as the primary mode of genome duplication—is largely unstudied in an ecological context.