The coat color of dromedary is usually uniform and varies from black to white, although dark- to light-brown colors are the most common phenotypes. This project was designed to gain knowledge on novel color-related variants using genotyping-by-sequencing (GBS). The association between the SNPs and coat color was tested using MLM (mixed linear models) with kinship matrix. Three GWAS models including white color vs. non-white color, black vs. non-black color, and light-brown vs. dark-brown color were performed. There were no distinct genetic clusters detected based on the color phenotypes. However, admixture occurred among all individuals of the four different coat color groups. We identified nine significant SNPs associated with white color after Bonferroni correction, located close to ANKRD26, GNB1, TSPYL4, TEKT5, DEXI, CIITA, TVP23B, CLEC16A, TMPRSS13, FXYD6, MPZL3, ANKRD26, HFM1, CDC7, TGFBR3, and HACE1 genes in neighboring flanking regions. The 13 significant SNPs associated with black color and the candidate genes were: CAPN7, CHRM4, CIITA, CLEC16A, COL4A4, COL6A6, CREB3L1, DEXI, DGKZ, DGKZ, EAF1, HDLBP, INPP5F, MCMBP, MDK, SEC23IP, SNAI1, TBX15, TEKT5, TMEM189, trpS, TSPYL4, TVP23B, and UBE2V1. The SNAI1 gene interacted with MCIR, ASIP and KIT genes. These genes play a key role in the melanin biosynthetic and pigmentation biological process and melanogenesis biological pathway. Further research using a larger sample size and pedigree data will allow confirmation of associated SNPs and the identified candidate genes.