The success of any recurrent selection program depends on the genetic variability of the evaluated population, which is used to refer to the diversity of existing alleles at many genetic loci. Thus, the goal of the present study was to investigate the impact of recurrent selection across nine cycles of a UENF-14 popcorn population through the analysis of genetic diversity and structure using microsatellite markers (EST-SSRs). Genomic DNA was extracted from young leaves of 25 individuals from each cycle (C0, C1 C2, C3, C4, C5, C6, C7, and C8), totaling 225 samples from the UENF-14 population. Fifty EST-SSR markers were used for the analysis of genetic diversity across the recurrent selection cycles, 16 of which were polymorphic. Thirty-four alleles were detected, with an average of 2.13 alleles per locus. Throughout all the recurrent selection cycles, there was a reduction in heterozygosity and an increase in inbreeding. The population structure showed a sharing of alleles, inferring that some may be directly related to the main selection characteristics.