Pseudocyclic aryl‐λ3‐iodanes are superior reagents for a variety of oxidative transformations due to a well‐balanced relation between stability, solubility and reactivity. Their properties are substantially influenced by a dative interaction between a Lewis base, in general the oxygen atom of a carboxylic acid or an amide, and the central hypervalent iodine atom. This work presents the first systematic investigation of pseudocyclic N‐heterocycle‐stabilized iodanes (NHIs). The synthesis of these throughout shelf‐stable solids is robust and can be achieved on a large scale. Their reactivity is highly tunable, depending on the stabilizing heterocycle. Solid state structures of selected derivatives are reported and their reactivity in a model oxygen transfer reaction is compared. Further derivatization reactions to N‐heterocycle‐stabilized pseudocyclic diaryliodonium salts and cyclic iodoso species are presented as well.