We consider the Fibonacci Hamiltonian, the central model in the study of electronic properties of one-dimensional quasicrystals, and establish relations between its spectrum and spectral characteristics (namely, the optimal Hölder exponent of the integrated density of states, the dimension of the density of states measure, the dimension of the spectrum, and the upper transport exponent) and the dynamical properties of the Fibonacci trace map (such as dimensional characteristics of the non-wandering hyperbolic set and its measure of maximal entropy as well as other equilibrium measures, topological entropy, multipliers of periodic orbits). We also exhibit a connection between the spectral quantities and the thermodynamic pressure function. As a result, a detailed description of the spectral properties for all values of the coupling constant is obtained (in contrast to all previous quantitative results, D.