Abstract:We consider the spectrum of the Fibonacci Hamiltonian for small values of the coupling constant. It is known that this set is a Cantor set of zero Lebesgue measure. Here we study the limit, as the value of the coupling constant approaches zero, of its thickness and its Hausdorff dimension. We prove that the thickness tends to infinity and, consequently, the Hausdorff dimension of the spectrum tends to one. We also show that at small coupling, all gaps allowed by the gap labeling theorem are open and the length of every gap tends to zero linearly. Moreover, for a sufficiently small coupling, the sum of the spectrum with itself is an interval. This last result provides a rigorous explanation of a phenomenon for the Fibonacci square lattice discovered numerically by Even-Dar Mandel and Lifshitz. Finally, we provide explicit upper and lower bounds for the solutions to the difference equation and use them to study the spectral measures and the transport exponents.
We consider the trace map associated with the Fibonacci Hamiltonian as a diffeomorphism on the invariant surface associated with a given coupling constant and prove that the non-wandering set of this map is hyperbolic if the coupling is sufficiently small. As a consequence, for these values of the coupling constant, the local and global Hausdorff dimension and the local and global box counting dimension of the spectrum of the Fibonacci Hamiltonian all coincide and are smooth functions of the coupling constant.
Abstract. We study the spectrum of the Fibonacci Hamiltonian and prove upper and lower bounds for its fractal dimension in the large coupling regime. These bounds show that as λ → ∞, dim(σ(H λ )) · log λ converges to an explicit constant (≈ 0.88137). We also discuss consequences of these results for the rate of propagation of a wavepacket that evolves according to Schrödinger dynamics generated by the Fibonacci Hamiltonian.
We consider the Fibonacci Hamiltonian, the central model in the study of electronic properties of one-dimensional quasicrystals, and establish relations between its spectrum and spectral characteristics (namely, the optimal Hölder exponent of the integrated density of states, the dimension of the density of states measure, the dimension of the spectrum, and the upper transport exponent) and the dynamical properties of the Fibonacci trace map (such as dimensional characteristics of the non-wandering hyperbolic set and its measure of maximal entropy as well as other equilibrium measures, topological entropy, multipliers of periodic orbits). We also exhibit a connection between the spectral quantities and the thermodynamic pressure function. As a result, a detailed description of the spectral properties for all values of the coupling constant is obtained (in contrast to all previous quantitative results, D.
Skew products over a Bernoulli shift with a circle fiber are studied. We prove that in the space of such products there exists a nonempty open set of mappings each of which possesses an invariant ergodic measure with one of the Lyapunov exponents equal to zero. The conjecture that the space of C 2 -diffeomorphisms of the 3-dimensional torus into itself has a similar property is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.