Par des méthodes de nature probabiliste, nous démontrons des nouveaux résultats de rigidité pour des groupes et des pseudo-groupes de difféomorphismes de variétés unidimensionnelles dont la classe de différentiabilité est intermédiaire (i.e. entre C 1 et C 2). En particulier, nous prouvons des généralisations du théorème de Denjoy et d'un lemme classique de Kopell pour des groupes abéliens. Ensuite, nous appliquons les techniques introduites à l'étude des feuilletages de codimension 1 dont la régularité transverse est intermédiaire. Nous obtenons notamment des versions généralisées du théorème de Sacksteder en classe C 1. Nous finissons par quelques remarques à propos de la mesure stationnaire
This work is devoted to the study of minimal, smooth actions of finitely generated groups on the circle. We provide a sufficient condition for such an action to be ergodic (with respect to the Lebesgue measure), and we illustrate this condition by studying two relevant examples. Under an analogous hypothesis, we also deal with the problem of the zero Lebesgue measure for exceptional minimal sets. This hypothesis leads to many other interesting conclusions, mainly concerning the stationary and conformal measures. Moreover, several questions are left open. The methods work as well for codimension-one foliations, though the results for this case are not explicitly stated.
Skew products over a Bernoulli shift with a circle fiber are studied. We prove that in the space of such products there exists a nonempty open set of mappings each of which possesses an invariant ergodic measure with one of the Lyapunov exponents equal to zero. The conjecture that the space of C 2 -diffeomorphisms of the 3-dimensional torus into itself has a similar property is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.