Air valves are often crucial components in an air management strategy for pressurized water conveyance systems. However, the reliability of characteristic curves of air valves found in product catalogs is quite variable. This paper evaluates the consistency of a selection of product curves to basic air flow principles. Several recurring issues are identified: catalogs that present identical curves for admission and expulsion (they are, in fact, quite distinct); admission curves that are inconsistent with the isentropic inflow model; inflow (admission) curves actually consistent with the shape of the isentropic outflow model; limited validity curves that encompass only part of the subsonic flow regimen; and unclear or unstated specifications regarding the conditions under which the characterization tests were performed or their results displayed. To examine the significance of these representational issues related to air valve capacity on system behaviour, this paper uses a case study involving the simulated transient response arising from a pump trip at the upstream end of a rising water line having a distinct high point fitted with an air valve. It is found that employing inaccurate air valve characteristics in a transient simulation may potentially result in appreciable or even dangerous simulation errors.