One of the main factors contributing to water scarcity is water loss in water distribution systems, which mainly arises from a lack of adequate knowledge in the design process, optimization of water availability, and poor maintenance/management of the system. Thus, from the perspective of sustainable and integrated management of water resources, it is essential to enhance system efficiency by monitoring existing system elements and enhancing network maintenance/management practices. The current study establishes a smart water grid (SWG) with a digital twin (DT) for a water infrastructure to improve monitoring, management, and system efficiency. Such a tool allows live monitoring of system components, which can analyze different scenarios and variables, such as pressures, operating devices, regulation of different valves, and head-loss factors. The current study explores a case study in which local constraints amplify significant water losses. It develops and examines the DT model’s application in the Gaula water distribution network (WDN) in Madeira Island, Portugal. The developed methodology resulted in a significant potential reduction in real water losses, which presented a huge value of 434,273 m3 (~80%) and significantly improved system efficiency. The result shows a meaningful economic benefit, with savings of about EUR 165k in water loss volume with limiting pressures above the regulatory maximum of 60 m w.c. after the district metered area (DMA) sectorization and the requalification of the network. Hence, only 40% of the total annual volume, concerning the status quo situation, is necessary to supply the demand. The infrastructure leakage index measures the existing real losses and the reduction potential, reaching a value of 21.15, much higher than the recommended value of 4, revealing the great potential for improving the system efficiency using the proposed methodology.
The risks associated with unsteady two-phase flows in pressurized pipe systems must be considered both in system design and operation. To this end, this paper summarizes experimental tests and numerical analyses that highlight key aspects of unsteady two-phase flows in water pipelines. The essential dynamics of air–water interactions in unvented lines are first considered, followed by a summary of how system dynamics change when air venting is provided. System behaviour during unsteady two-phase flows is shown to be counter-intuitive, surprising, and complex. The role of air valves as protection devices is considered as is the reasonableness of the usual assumptions regarding air valve behaviour. The paper then numerically clarifies the relevance of cavitation and air valve performance to both the predicted air exchanges through any installed air valves and their role in modifying system behaviour during unsteady flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.