The oscillation of impulsive differential equations plays an important role in many applications in physics, biology and engineering. The symmetry helps to deciding the right way to study oscillatory behavior of solutions of impulsive differential equations. In this work, several sufficient conditions are established for oscillatory or asymptotic behavior of second-order neutral impulsive differential systems for various ranges of the bounded neutral coefficient under the canonical and non-canonical conditions. Here, one can see that if the differential equations is oscillatory (or converges to zero asymptotically), then the discrete equation of similar type do not disturb the oscillatory or asymptotic behavior of the impulsive system, when impulse satisfies the discrete equation. Further, some illustrative examples showing applicability of the new results are included.