A concurrent dual-band self-oscillating mixer (SOM), based on a ring-shaped stepped-impedance resonator, is proposed and analyzed in detail. Taking advantage of the ring even and odd resonances, the circuit can operate in concurrent dual quasi-periodic mode and injection-locked mode. In the second case, it behaves as a dual-band zero-IF mixer. Initially an analytical study of the SOM behaviour in the two modes is presented. Then a variety of accurate numerical methods are used for an in-depth investigation of the main aspects of its performance, including stability, conversion gain, linearity, and phase noise. The recently proposed contour-intersection technique and the outer-tier perturbation analysis are suitably adapted to the SOM case. A method is also presented to distinguish the parameter intervals leading to heterodyne and to zero-IF operation at both the lower and upper frequency bands. In the zero-IF SOM, the possible instantaneous unlocking in the presence of modulated input signals is investigated and avoided. The methods have been applied to a dual mixer at the frequencies 2.4 GHz and 4.1 GHz.