Significance: Historically, honey has been regarded as a potent agent in bacterial inhibition and wound healing. An increased prevalence of antibiotic resistant pathogens spurred an initial resurgence in honey's clinical popularity, with it quickly finding a place in wound care and regenerative medicine. However, this renewed usage demanded a need for improved delivery and overall research of its bioactive properties. This review provides an overview of the antibacterial properties and clinical use of honey. Recent Advances: The past and present clinical use of honey is noted, focusing specifically on burns and ulcers, as these are the most common applications of the natural agent. While honey is often used without modification clinically, there are also commercially available products ranging from dressings to gels, which are discussed. Critical Issues: Despite these products growing in popularity, the need for improved delivery and a structure to support wound healing could improve the treatment method. Future Directions: Tissue engineering scaffolds can provide an alternative method of honey delivery with research focusing primarily on electrospun scaffolds, hydrogels, and cryogels. Current studies on these scaffolds are discussed with respect to their advantages and potential for future clinical work. Overall, this review provides a comprehensive overview of the properties of honey, its current use in wound healing, and the potential for future incorporation into tissue-engineered scaffolds to provide an innovative wound healing agent.