The present study was carried out to investigate the effect of individual drought, heat, and combined drought and heat stress on tomato plants. Combined stress resulted in the higher accumulation of Proline (101.9%), MDA (38.55%), H 2 O 2 (101.19%), and lower levels of RWC (53.84%). Individual drought and heat stress decreased photosynthetic pigments like total chlorophyll content by (45.45%) and (25.35%), respectively, higher rates of pigment reduction (79.42%) were observed under combined drought and heat stress. Combined stress decreased PSII efficiency (Fv/Fm), quantum yield (ΦPSII), and photochemical efficiency (qp) and increased non-photochemical quenching (NPQ) levels. Moreover, the gas exchange parameters E, A, and Pn decreased by 5.36%, 36.45%, and 51.00%, respectively, in comparison to control plants. Antioxidant enzymes, SOD, APX, CAT, and GR showed a two-to threefold increase under combined drought and heat stress; however, the non-enzymatic antioxidants AsA and GSH displayed one-twofold increase under combined stress. Moreover, 2-to 2.5fold decrease was observed in MDHAR and DHAR enzyme transcripts under combined stress conditions. The transcripts corresponding to AsA-GSH pathway enzymes SOD, APX, GR, DHAR, and MDHAR were up-regulated by 8-to 12-fold under combined drought and heat. Furthermore, DREB and LEA transcripts were up-regulated under drought and combined stress and down-regulated under drought stress. In the same manner, HSP70 and HSP90 transcripts were up-regulated under heat and combined stress; however, the transcription levels got down-regulated under drought stress. Additionally, rbcL and RCA transcripts were down-regulated especially under combined stress in comparison to individual drought and heat conditions. PSIP680 relative expression levels were up-regulated under drought stress; however, the transcripts were downregulated under heat and combined stress. Taken together, the results suggest that the combined stress has a predominant effect over individual stress.