Background:Polymethyl methacrylate (PMMA) antibiotic beads though have proved their utility as a local antibiotic delivery system, however, there are limitations. Decalcified bone matrix (DBM) as a vehicle of antibiotics can serve the purpose, provided a minimum inhibitory concentration is sustained. Healing of the defect and avoiding the second surgery is another advantage. We studied the DBM as the delivery vehicle for vancomycin in controlling the methicillin-resistant Staphylococcus aureus (MRSA) osteomyelitis as well as healing of the cavity simultaneously in an experimental study.Materials and Methods:An in vitro study was conducted to optimize vancomycin impregnation in the DBM. For the in vivo study, a unicortical defect was created in the metaphysis of the distal femur in 18 rabbits. After contaminating the defect with MRSA, rabbits were divided into three groups. Group I (eight limbs) received no graft. Defects in group II (11 limbs) were filled with plain DBM chips and in group III (14 limbs), cavities were implanted with vancomycin-impregnated decal bone chips. Rabbits were assessed by clinical, radiological, histological, gross examination and bacterial load assay. High Performance Liquid Chromatography HPLC analysis of vancomycin in group III was done to assess the concentration in DBM chips.Results:In group I, the infection persisted throughout the period of the study. Group II showed the fulminated infection at the grafted site with DBM chips sequestrating out. Vancomycin-impregnated decal chips in group III did not show any sign of infection and eventually incorporated. The bacterial load study showed a progressive load change and HPLC revealed an effective antibiotic concentration up to 3 weeks in both in vitro and in vivo.Conclusion:Decal bone chips were effective as the local antibiotic delivery vehicle in preventing the MRSA osteomyelitis model. It eluted vancomycin significantly and the graft uptake was also excellent. Allogeneic decal grafts eliminated the need for second surgery and acted as an excellent delivery vehicle for antibiotics.