Purpose
The purpose of this study was to determine in which species and under what conditions lens tumors occur.
Design
A review of data bases of available human and veterinary ocular pathological material and the previously reported literature.
Participants
Approximately 18,000 patients who had ocular surgical specimens submitted and studied at the University of Wisconsin School of Medicine and Public Health (UWSMPH) between 1920 and 2014 and 45,000 ocular veterinary cases from the Comparative Ocular Pathology Laboratory of Wisconsin (COPLOW) between 1983 and 2014.
Methods
Material in two major archived collections at the University of Wisconsin medical and veterinary schools were studied for occurrence of lens tumors. Tumor was defined as “a new growth of tissue characterized by progressive, uncontrolled proliferation of cells.” In addition, cases presented at 3 major eye pathology societies (Verhoeff-Zimmerman Ophthalmic Pathology Society, Eastern Ophthalmic Pathology Society, and The Armed Forces Institute of Pathology Ophthalmic Alumni Society) from 1975 through 2014 were reviewed. Finally, a careful search of the literature was carried out. Approval from the IRB to carry out this study was obtained.
Main Outcome Measures
The presence of tumors of the lens.
Results
The database search and literature review failed to find an example of a lens tumor in humans. In contrast, examples of naturally occurring lens tumors were found in cats, dogs, rabbits, and birds. 4.5% of feline intraocular and adnexal neoplasms (234/5153) in the veterinary school database were designated as feline ocular post-traumatic sarcoma (FOPTS), a tumor previously demonstrated to be of lens epithelial origin. Similar tumors were seen in rabbit eyes, a bird, and in a dog. All four species with lens tumors had a history of either ocular trauma or protracted uveitis. The literature search also revealed cases where lens tumors were induced in zebrafish, rainbow trout, hamsters, and mice, by carcinogenic agents (methylcholanthrene, thioacetamide), oncogenic viruses (SV40, HPV-16), and genetic manipulation.
Conclusions
Our results suggest that lens tumors do not occur in humans. In contrast, following lens capsule rupture, a lens tumor can occur in other species. We hypothesize that a genetic mechanism exists which prevents lens tumors in humans.