Osteotomies are common surgical procedures used for instance in rhinoplasty and usually performed using an osteotome impacted by a mallet. Visual control being difficult, osteotomies are often based on the surgeon proprioception to determine the number and energy of each impact. The aim of this study is to determine whether a hammer instrumented with a piezoelectric force sensor can be used to (i) follow the displacement of the osteotome and (ii) determine when the tip of the osteotome arrives in frontal bone, which corresponds to the end of the osteotomy pathway. Seven New Zealand White rabbit heads were collected, and two osteotomies were performed on their left and right nasal bones using the instrumented hammer to record the variation of the force as a function of time during each impact. The second peak time τ was derived from each signal while the displacement of the osteotome tip D was determined using video motion tracking. The results showed a significant correlation between τ and D ( ρ2 = 0.74), allowing to estimate the displacement of the osteotome through the measurement of τ. The values of τ measured in the frontal bone were significantly lower than in the nasal bone ( p<10−10), which allows to determine the transition between the nasal and frontal bones when τ becomes lower than 0.78 its initial averaged value. Although results should be validated clinically, this technology could be used by surgeons in the future as a decision support system to help assessing the osteotome environment.