Abstract-We consider the optimization of Chase combining (CC)-based hybrid-automatic repeat request (HARQ) schemes with a limit on the maximum number of retransmissions. We formulate two optimization problems: (i) minimizing the packet drop probability (PDP) under a total average transmit power constraint, and (ii) minimizing the average transmit power under a fixed PDP constraint. Towards solving these equivalent optimization problems, we provide a closed-form expression for the outage probability of a CC-HARQ scheme. We then show that solving the optimization problems using an exact expression of the outage probability becomes complex with an increase in the maximum number of retransmissions. We propose an alternative approach in which we approximate the optimization problems by using an approximate outage probability expression and formulate the two optimization problems as two equivalent geometric programming problems (GPPs), which can be solved efficiently even for a large limit on the maximum number of retransmissions.The results show that the optimal power allocation solution provides significant gains over the equal power allocation solution. For PDP values below 10 −3 , the optimal solution provided by the GPP approach has a performance close to that of the solution provided by solving the optimization problem exactly using nonlinear optimization techniques.