In this paper, a mixture Gamma shadowed (MGS) model is proposed as a unified composite distribution via representing the shadowing impact by an inverse Nakagami-m. The exact expression and the asymptotic behaviour at high average signal-to-noise ratio (SNR) regime of the fundamental statistics of a MGS distribution are derived first. These statistics are then applied to analyze the performance of the wireless communication systems over double shadowed κ-µ fading channels. In particular, the outage probability (OP), average bit error probability (ABEP), average channel capacity (ACC), effective capacity (EC) and average area under the receiver operating characteristics curve (AUC) of energy detection (ED) are provided. The numerical and simulation results as well as a comparison with previous exact works are presented to verify the validation of our analysis.Index Terms-Mixture Gamma shadowed, double shadowed κ-µ fading, average bit error probability, capacity analysis.
I. INTRODUCTIONT HE wireless communications channel may undergo the effect of the multipath and shadowing fading simultaneously [1]. Accordingly, many works have been dedicated to analyze the performance of the communication systems over generalized fading channels, such as, κ-µ and η-µ [2]. These generalized conditions can provide close results to the practical measurements and approximately comprise all the classical fading distributions. Hence, the probability density function (PDF), cumulative distribution function (CDF), and moment generating function (MGF) of the composite η-µ/Gamma fading models were derived in [3] with applications to the outage probability (OP), average bit error probability (ABEP) and average channel capacity (ACC). The PDF and CDF of composite κ-µ/Gamma fading were presented in [4]. The statistics of the κ-µ shadowed fading in which the dominant components are shadowed by a Nakagami-m were given in [5]. The authors in [6] assumed that both κ-µ and η-µ fading models are shadowed by an inverse Gamma distribution.Recently, several studies have been explained that the fading channels may subject to double shadowing impacts at the same time. For example, in [7], the statistical properties of the double shadowed Rician fading channel were derived. In [8],