Ageing impairs endothelial function and predisposes the person to ischaemic stroke (IS). Endothelial progenitor cells (EPCs) repair endothelial damage and induce post-ischaemic neovascularisation. Given the prevalence of IS in older population, this study explored whether changes in EPC number and function may reliably predict the type or outcome of stroke in patients ≥ 65 years of age. For this, blood samples were collected once from healthy volunteers (HVs, n = 40) and four times (admission and days 7, 30 and 90 post-stroke) from participants with lacunar (n = 38) or cortical (n = 43) stroke. EPCs were counted with flow cytometry and defined as non-haematopoietic cells (CD45-) expressing markers for stemness (CD34 +), immaturity (CD133 +) and endothelial maturity (KDR +). Clonogenesis, tubulogenesis, migration and proliferation assays were performed as measures of EPC functionality. Biochemical profile of plasma inflammatory and angiogenic agents were studied using specific ELISAs. Primary outcome was disability or dependence on day 90 post-stroke, assessed by the modified Rankin Scale (mRS). Compared to HVs, EPC numbers were higher in stroke patients at all time points studied, reaching significance at baseline and day 30. No differences in EPC counts and functionality were observed between lacunar and cortical stroke groups at any time. Plasma endostatin, PDGF-BB, TNF-α and VEGF levels were higher in stroke patients vs HVs. Patient outcome, evaluated by mRS on day 90 post-stroke, did not correlate with EPC count or functionality. Baseline EPC counts may serve as a diagnostic marker for stroke but fail to distinguish between different stroke subtypes and predict post-stroke outcome.
Graphical Abstract