Background
Higher planting densities typically cause a decline in grain weight, limiting the potential for high maize yield. Additionally, variations in grain filling occur at different positions within the maize ear. Abscisic acid (ABA) is important for grain filling and regulates grain weight. However, the effects of exogenous ABA on the filling process of maize grains at different ear positions under high planting density are poorly understood. In this study, two summer maize hybrids (DengHai605 (DH605) and ZhengDan958 (ZD958)) commonly grown in China were used to examine the effects of ABA application during the flowering stage on grain filling properties, starch accumulation, starch biosynthesis associated enzyme activities, and hormone levels of maize grain (including inferior grain (IG) and superior grain (SG)) under high planting density.
Results
Our results showed that exogenous ABA significantly increased maize yield, primarily owing to a higher grain weight resulting from an accelerated grain filling rate relative to the control. There was no significant difference in yield between DH605 and ZD958 in the control and ABA treatments. Moreover, applying ABA promoted starch accumulation by raising the activities of sucrose synthase, ADP-glucose pyrophosphorylase, granule-bound starch synthases, soluble starch synthase, and starch branching enzyme in grains. It also increased the levels of zeatin riboside, indole-3-acetic acid, and ABA and decreased the level of gibberellin in grains, resulting in more efficient grain filling. Notably, IG exhibited a less efficient filling process compared to SG, probably due to lower starch biosynthesis associated enzyme activities and an imbalance in hormone contents. Nevertheless, IG displayed greater sensitivity to exogenous ABA than SG, suggesting that appropriate cultural measures to improve IG filling may be a viable strategy to further increase maize yield.
Conclusions
According to our results, spraying exogenous ABA could effectively improve grain filling properties, accelerate starch accumulation by increasing relevant enzyme activities, and regulate hormone levels in grains, resulting in higher grain weight and yield of maize under high planting density. Our findings offer more evidence for using exogenous hormones to improve maize yield under high planting density.