Summary Southern corn rust (SCR), which is a destructive disease caused by Puccinia polysora Underw. (P. polysora), commonly occurs in warm‐temperate and tropical regions. To identify candidate proteins related to SCR resistance and characterize the molecular mechanisms underlying the maize–P. polysora interaction, a comparative proteomic analysis of susceptible and resistant maize lines was performed. Statistical analyses revealed 1489 differentially abundant proteins in the resistant line, as well as 1035 differentially abundant proteins in the susceptible line. After the P. polysora infection, the abundance of one remorin protein (ZmREM1.3) increased in the resistant genotype, but decreased in the susceptible genotype. Plant‐specific remorins are important for responses to microbial infections as well as plant signalling processes. In this study, transgenic maize plants overexpressing ZmREM1.3 exhibited enhanced resistance to the biotrophic P. polysora. In contrast, homozygous ZmREM1.3 UniformMu mutant plants were significantly more susceptible to P. polysora than wild‐type plants. Additionally, the ZmREM1.3‐overexpressing plants accumulated more salicylic acid (SA) and jasmonic acid (JA). Moreover, the expression levels of defence‐related genes were higher in ZmREM1.3‐overexpressing maize plants than in non‐transgenic control plants in response to the P. polysora infection. Overall, our results provide evidence that ZmREM1.3 positively regulates maize defences against P. polysora likely via SA/JA‐mediated defence signalling pathways. This study represents the first large‐scale proteomic analysis of the molecular mechanisms underlying the maize–P. polysora interaction. This is also the first report confirming the remorin protein family affects plant resistance to SCR.
High temperature (HT) has recently become one of the most important abiotic stresses restricting crop production worldwide. MicroRNAs (miRNAs) are important regulators in plant development and stress responses. However, knowledge of miRNAs of maize in response to HT is limited. In this study, we simultaneously adopted miRNA sequencing and transcriptome profiling to analyze the differential expression of miRNAs and mRNAs in maize during exposure to HT stress. Our analysis revealed 61 known miRNAs belonging to 26 miRNA families and 42 novel miRNAs showing significant differential expression, with the majority being downregulated. Meanwhile, the expression of 5450 mRNAs was significantly altered in the same stressed tissues. Differentially expressed transcripts were most significantly associated with response to stress, photosynthesis, biosynthesis of secondary metabolites, and signal transduction pathways. In addition, we discovered 129 miRNA–mRNA pairs that were regulated antagonistically, and further depiction of the targeted mRNAs indicated that several transcription factors, protein kinases, and receptor-like-protein-related transmembrane transport and signaling transduction were profoundly affected. This study has identified potential key regulators of HT-stress response in maize and the subset of genes that are likely to be post-transcriptionally regulated by miRNAs under HT stress.
Autism is a neurodevelopmental disorder, and embryonic exposure to valproic acid (VPA) in rodents is the most frequently studied environmentally triggered autism models. Valproic acid can affect gene transcription as a histone deacetylase inhibitor, and thus may alter the expression of the most genes including reference genes. The aim of the current study is to validate suitable reference genes for quantitative real-time PCR (qPCR) quantification in prefrontal cortex and hippocampus of VPA rat models of autism. Female rats received a single intraperitoneal injection of 400 mg/kg sodium VPA at day 12.5 post-conception and controls were injected with saline. Male offspring were used to observe the expression of nine commonly used reference genes by qPCR, and the data were analyzed by four commonly used reference selection program including geNorm, BestKeeper, NormFinder and RefFinder. The results showed that VPA affected the expression of these commonly used reference genes in prefrontal cortex and hippocampus on postnatal 3, 5 weeks and 80 days, Gapdh and Actin, two very frequently used reference genes, were identified as the least stable genes in VPA group. Hprt1 was selected as the most stable gene, and Hmbs and Tbp were the optimum gene pair in prefrontal cortex and hippocampus across all VPA and controls. Problematically, the use of unstable reference genes results in calculation of different PGRN mRNA expression levels. The results suggest that selection of suitable references is critical for accurate mRNA quantification, and specifically in VPA induced rat models of autism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.