Abstract:Acinetobacter baumannii is an opportunistic pathogen which play the more and more greater role in the pathogenicity of the human. It is often attached with the hospital environment, in which is able easily to survive for many days even in adverse conditions. Acinetobacter baumannii is the species responsible for a serious nosocomial infections, especially in the intensive care units. Option of surviving in natural niches, and in the hospital environment could also be associated with the efflux pump mechanisms. Mechanisms of efflux universally appear in all cells (eukaryotic and prokaryotic) and play the physiological important role. In prokaryote, the main functions are evasion of such naturally produced molecules, removal of metabolic products and toxins. These pumps could also be involved in an early stage of infection, such as adhesion to host cells and the colonization. Importantly, they remove commonly used antibiotics from the cell in therapy of infections caused by these bacteria. Efflux pumps exemplify a unique phenomenon in drug resistance: a single mechanism causing resistance against several different classes of antibiotics. In Acinetobacter baumannii, the AdeABC efflux pump, a member of the resistance-nodulation-cell division family (RND), has been well characterized. Aminoglicosides, tetracyclines, erythromycin, chloramphenicol, trimethoprim, fluoroquinolones, some β-lactams, and also recently tigecycline, were found to be substrates for this pump. Drugs, as substrates for the AdeABC pump, can increase the expression of the AdeABC genes, leading to multidrug resistance (MDR). From this reason, treatment failure and death caused by Acinetobacter baumannii infections or underlying diseases are common. Because the AdeABC pump is widespread in Acinetobacter baumannii, similarly to other pumps in Gram-negative and Gram-positive bacteria, exists a need of searching a new therapeutic solutions. Specific efflux inhibitors of pumps (EPIs), including AdeABC inhibitors, could be suppress the activity of pumps and restore the sensitivity of such important bacteria as Acinetobacter baumannii to commonly used antibiotic.