The 2-D ballooning transform, devised to study local high toroidal number (n) fluctuations in axisymmetric toroidal system (like tokamaks), yields a well-defined partial differential equation for the linear eigenmodes. In this paper, such a ballooning equation of the second kind is set up for ion temperature gradient driven modes pertinent to a 2-D non-dissipative fluid plasma; the resulting partial differential equation is numerically solved, to calculate the global eigenvalues, and the 2-D mode structure is presented graphically along with analytical companions. The radial localization of the mode results from translational symmetry breaking for growing modes and is a vivid manifestation of spontaneous symmetry breaking in tokamak physics. The eigenmode, poloidally ballooned at # ¼ 6p=2, is radially shifted from associated rational surface. The global eigenvalue is found to be very close to the value obtained in 1-D parameterized (k ¼ Çp=2) case. The 2-D eigenmode theory is applied to estimate the toroidal seed Reynolds stress [Y. Z. Zhang, Nucl. Fusion Plasma Phys. 30, 193 (2010)]. The solution obtained from the relatively simplified ballooning theory is compared to the solution of the basic equation in original coordinate system (evaluated via FFTs); the agreement is rather good.