This paper is to numerically investigate, in one dimension, the effects of precursor plasma resulted from wire-array ablation on the performance of its following implosion after the ablation. The wire-array ablation is described by an analytic model, which consists of a rocket model or Sasorov's expression of wire-array mass ablation rate, the evolution equation of magnetic field, and several roughly reasonable assumptions. The following implosion is governed by the radiation magnetohydrodynamics. The implosion processes of wire-array Z-pinch from plasma shells prefilled and un-prefilled by the low-density plasma inside them are studied, and that from the wire-array ablations, which may be changed through varying the ablation time, ablation rate, and ablation velocity V abl , are also simulated. The obtained results reveal that the prefilled low-density plasma and the precursor plasma from the wire-array ablation help to enhance the plasma shell pinch and the final implosion of the wire array, respectively, compared to the pinch of un-prefilled plasma shell. With the same plasma masses, which are distributed in the interior of the array and the shell, and modified Spitzer resistivity, the implosions that start from the wire ablation develop faster than that from the plasma shell with the prefill. If more substance ablates from the wire array before the start of its implosion, the final Z-pinch performance could be better. The Z-pinch plasma is highly magnetized with driven current more than 3 MA.